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Abstract. By studying the structure of infrared divergences in a toy propagator in the replica
approach to the Ising spin glass belowTc, we suggest a possible cancellation mechanism which
could decrease the degree of singularity in the loop expansion.

1. Introduction

The mean field approximation, when fluctuations are not taken into account, predicts a
finite critical temperatureTc for the Ising spin glass [1]. In the replica approach [2], replica
symmetry is spontaneously broken atTc in a hierarchical and continuous way, yielding an
ultrametric organization of equilibrium states (see [3, 4] and [5] for a review).

Corrections to mean field theory up to third order inε = 6 − D in the paramagnetic
phase have been carried out in [6], while problems still exist in the computation of such
corrections belowTc. The difficulties lie in the complexity of the replica approach, which
leads to very complicated bare propagators, with severe infrared singularities (see [7, 8]).

A strong effort has been made in studying this difficult problem and many interesting
results have been obtained. Among them, we recall the analysis of the modes with zero mass
(see [9, 10]), the study of the explicit breaking of replica symmetry (see [11, 12]), the study
of some strong renormalization effects (see [13, 14]) and, most recently, the derivation of a
powerful method to compute the bare propagators (see [15, 16]), which provides a clearer
derivation of the formulae first presented in [7, 8]. Unfortunately, the one-loop contribution
to the propagator has not been fully computed and even the lower critical dimension remains
unknown.

Ignoring the possible renormalization effects, a naive prediction for the lower critical
dimension would be three. Indeed, disregarding thep−4 singularity, which appears only
in the zero overlap propagator and is not present in a small magnetic field, the leading
infrared singularity of the bare propagators isp−3. However, it is not clear how much can
really be inferred from these strong singularities in the framework of replicas. In particular,
questions arise as to their origin and their consequences for measurable quantities. In fact,
other approaches suggest that the lower critical dimension could be less than three, or at
least very near to three. These follow from a computation of the free energy increase due
to an interface among different phases and from numerical simulations [17–19].

The aim of this paper is to try to take a step towards a deeper understanding of the
structure of these divergences. We focus on how thep−3 singularities are induced in the
bare propagators and we suggest a possible mechanism for their cancellation.

The paper is organized as follows. After a brief summary of the replica approach,
which can be skipped by the expert reader, we study a toy propagator defined using a field
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3796 M E Ferrero and G Parisi

that explicitly breaks replica symmetry (already studied in [12] using a different method).
For this propagator we are able to derive a differential equation which shows how the
p−3 singularity due to continuous replica symmetry breaking cancels in the infrared limit
and we illustrate how this cancellation results in a well defined limit within the theory of
distributions. Then we show how, in the framework of distributions, this propagator can
be used to calculate the infrared behaviour of a toy four-point function at tree level. We
conclude our analysis by studying the structure of leading singularities in the full theory
and we discuss the possible generalization of the cancellation mechanism.

2. The replica approach

The Ising spin glass, or E–A model [1], is defined by the following Hamiltonian,

H [si ] = −
∑
(i,j)

Jij sisj − h
∑

i

si (1)

where si = +1, −1 are the spin variables,i = 1, . . . , N , and ( ) stands for nearest
neighbours. The independent quenched parametersJij are chosen from a Gaussian
distribution with zero average and varianceJ 2 = 1/N . In what follows, the magnetic field
h is taken different from zero, the limith → 0 being performed after the limitN → ∞.

The study of the equilibrium properties of the quenched problem can be performed in
the replica approach [2]. In this approach an effective theory is obtained by averaging over
the disorder, indicated by an overbar in the following. Rather than do this for the free
energy, the replica approach averages over the disorder the partition function ofn copies
(replicas) of the original model,n being analytically continued to zero at the end. The
effective theory is then symmetric with respect to permutations of then replicas (replica
symmetry), with an × n matrix Q (Qab = Qba andQaa = 0) for the order parameter.

At mean field level, a second-order transition occurs at the de Almeida–Thouless line,
which terminates atTc = 1 for h = 0. On this line, roughly speaking, several states start to
contribute to the Gibbs measure and ergodicity is lost. These results can be recovered, near
Tc, through the expansion of the effective free energy densityF in powers of the (small)
order parameter

βF [Q] + log 2+ 1
4β2 = W [Q] = − lim

n→0

1

n

(
1
2τ Tr Q2 + 1

6 Tr Q3 + 1
12

∑
ab

(Qab)
4

)
(2)

whereτ = Tc − T and Tr stands for trace. In the framework of the Parisi ansatz [3], the
saddle point ofQ is looked for in a particular subspace using a hierarchical procedure.
In this subspace, in whichQ can be expressed in terms of a functionq(x) defined in the
interval [0, 1], the functionalW [Q] results in

W [q] =
∫ 1

0

(
1
2τq2(x) − 1

6

(
xq3(x) + 3q2(x)

∫ 1

x

q(y) dy

)
+ 1

12q
4(x)

)
dx. (3)

Below Tc stationarity with respectq(x) yields the solution

q(x) = x/2 0 < x 6 x1

q(x) = q(x1) x1 < x < 1 (4)

wherex1 is defined by 2τ − x1 + x2
1/2 = 0. Replica symmetry, which in this framework

requiresq ′ = 0, is spontaneously broken belowTc.
Replica symmetry breaking (RSB) is related to the probability of measuring a given

value q for the overlap〈si〉a〈si〉b between two states,a and b, which differ by a finite
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amount in free energy. It has been shown that such a probability can be computed through
the order parameterq(x),

P(q) =
(

dq(x)

dx

)−1

= 2θ(q1 − q) + (1 − 2q1)δ(q − q1). (5)

In the metric dictated by the overlap these states are organized ultrametrically: given
three states at least two overlaps are equal, the third being greater than the other two. This
organization allows the use of a tree to express the overlap between different states. By
putting the states at the end of the branches of a tree, the overlap between the states can
be represented by the distance between the top root and the level of the point where the
branches coincide.

Before going beyond mean field, let us recall that the fluctuations of the order parameter
Q around the RSB saddle point are usually divided into three families: longitudinal (L),
anomalous (A) and replicon (R) (see [16] for the most recent and exhaustive analysis).

The longitudinal modes are by definition invariant under the action of the symmetry
group which leaves invariant the ansatz ofQ, and therefore correspond to fluctuations in
q(x). On the other hand, the anomalous and replicon modes break even thisn replica
permutation group and are parametrized in term of functions of two and three variables,
as explained in detail in [16]. The conditions imposed by the breaking of this residual
symmetry turn out to be strong enough to determine completely the R eigenvalues but not
the L–A ones, where one has to explicitly solve the integral eigenvalue equations.

Zero modes of the fluctuations around the mean field saddle point appear in each family,
the rest of the spectrum being positive. A remarkable result is that in the replicon sector,
where one has a closed expression for the eigenvaluesλ(x, k, l), one finds that zero modes
are present for a finite range of eigenvectors, i.e.

λ(x, x, x) = 0. (6)

This can also be seen by explicit differentiation of the saddle point equation and using the
fact that replica symmetry breaking is continuous (as first shown in [9]).

For future reference, let us also recall that an explicit RSB can be introduced in the
theory (a deep analysis on the nature of the explicit RSB can be found in [11]) by adding
to the effective free energy the term∫ 1

0
q(x)ε(x) dx. (7)

A finite conjugate fieldε induces a shift in the order parameterq(x) which provides
a kind of infrared regulator because it induces a gap proportional to the slope ofε in the
spectrum (as shown in [12]).

In the next section we consider such a fieldε as an external source in order to perform
a detailed analysis of the infrared limit in the replica approach.

3. The ‘projected’ theory

For the time being, let us define a propagator in the subspace identified byq(x). To define
such a propagator, we add to the functionalW [q] a kinetic term and consider how a small
external conjugate fieldε, explicitly breaking replica symmetry, perturbs the mean field
solution. We have the following theory for a fieldδq(x; p), in which x is a continuous
internal degree of freedom,

W [q + δq] − 1
4p2

∫ 1

0
(δq(x; p))2 dx +

∫ 1

0
δq(x; p)ε(x; p) dx (8)
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and we introduce the bare propagatorG(x, y; p) through the relation

δq(x; p) =
∫ 1

0
G(x, y; p)ε(y; p) dy. (9)

For smallε the equation forq(x) leads to the following equation (see appendix A),

p2G(x, y; p) + 2
∫ x

0
q(z)G(z, y; p) dz + 2q(x)

∫ 1

x

G(z, y; p) dz = 2δ(x − y). (10)

After repeated differentiation of the replica variable, we obtain

p2 ∂2G(x, y; p)

∂x2
− 2q ′(x)G(x, y; p) + 2q ′′(x)

∫ 1

x

G(z, y; p) dz = 2δ′′(x − y). (11)

In what follows we are mainly interested in the diagonal sectorx = y < x1 whenp → 0,
so we focus on this case. Forp = 0 the previous equation leads to the solution

G(x, y; 0) = −2δ′′(x − y) (12)

while the solution to these equations for finitep, andx, y < x1 is

G(x, y; p) = 2δ(x − y)

p2
− e−|x−y|/p

p3
+ g(x, y; p) (13)

where the functiong(x, y; p) is not singular in the limitp → 0 (appendix A).
We observe that the propagator already computed has been studied in [12], using a

different method, for the purpose of discussing the regularization induced byε.
The results (12) and (13) are interesting for two reasons. On the one hand, (12)

shows how the small momentum behaviour of this propagator can be cast into the form
of a distribution. The integral kernel of the zero momentum equation forG is only
min{q(x), q(y)} because the strictly diagonal contribution of the kernel vanishes on the
mean field saddle point. This implies that equation (12) is its inverse, which shows that
a smallε(x) > 0, independent of space, induces a shift ofq(x) for x < x1 only through
−2ε(x)′′ > 0. The propagator induced byε for x < x1 is massive.

On the other hand, (13) allows us to understand how continuous replica symmetry
breaking gives rise beforex1 to the diagonalp−3 singularity for smallp. In fact, when
we add the kinetic term of orderp2 on the diagonal, the absence of a strictly diagonal
contribution in the kernel implies a contributionp−2 on the diagonal ofG. But now, to
keep the off-diagonal elements of the product of the two matrices zero, a diverging off-
diagonal contribution inG is also needed. Such a contribution can only bep−3 with an
exponential prefactor because it has to be smooth and coalesces forp = 0.

We learn that care is needed in the limitp → 0. This limit should be considered in
the sense of distributions, paying attention to the cross-over betweenx and p. A finite
momentum induces a regularization of the distribution which appears through two singular
terms, which cancel in the limit of smallp.

To proceed in this analysis let us now consider the propagator with a sourceε 6= 0.
We know from the previous analysis (atε = 0) that for smallp there is an off-diagonal
contribution of widthp and orderp−3 that cancels thep−2 singularity and leads to a massive
propagator. The analysis forp = 0 and smallε is similar with ε′/q ′ playing the role ofp2.
At zero momentum the propagator does not diverge asε′−1 but is instead given by

G(x, y; 0)ε = δq(x)ε

δε(y)
= −δ′′(x − y)

q ′(x)ε
. (14)
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Let us use this result to compute the four-point function at tree level. By taking two
derivatives with respect to the conjugate fieldε we obtain

G(4)
conn(x, y, z, w; 0) = δ2G(x, y; 0)ε

δε(z)δε(w)

∣∣∣∣
ε=0

= −2
δ′′(x − y)δ′′′(x − w)δ′′′(x − z)

q ′(x)5
. (15)

This result, derived in detail in appendix B, shows that in the four-point function the infrared
contributions from the two diagrams with four external legs, the one from the quartic vertex
and the one from two cubic vertices with a propagator flowing between, are similar but do
not cancel.

The absence of the complete cancellation is not too surprising for this propagator. In
fact this propagator is massive and expresses the response of the order parameter to an
explicit breaking of the replica symmetry. It is similar to the longitudinal propagator in
an O(N) model, which is regular in the infrared limit. However, it is remarkable that in
the long wavelength limit the propagator forces the two diagrams with four external legs,
which are very different in structure, towards the same kind of contribution. This is exactly
what happens in an O(N) model, where the cancellation of a different four-point function
(transverse) is required by a Ward identity.

The possibility of using distributions to investigate the infrared limit of the complete
propagators and to compute the complete four-point function is appealing. Let us analyse
the structure of the leading singularities of the full theory.

4. A preliminary analysis of the full theory

Our aim here is to investigate the possibility of extending the results obtained for the toy
propagator, a two index object, to the complete propagators.

We have performed a preliminary study of these propagators using the results in [7, 8].
The propagators for the full theory are defined through the inverse of the mass matrix with
a diagonal kinetic term

Gαβ,γ δ(p) = 〈δQαβ(p)δQγδ(−p)〉 =
(

p2 + δ2W [Q]

δQδQ

)−1

αβ,γ δ

. (16)

Because the replicon eigenvalues are known in a closed form, the Green functions are
usually split (we follow the notation introduced in [8]) into two contributions,

RGxx
z1z2

(p) and LAGxy
z1z2

(p) (17)

whereα∩β = x if qαβ = q(x), α∩α = 1, andx = α∩β, y = γ ∩δ, z1 = max{α∩γ, α∩δ}
andz2 = max{β ∩ γ, β ∩ δ}.

We are interested in the divergences of orderp−3 because we know from [7] that the
p−4 singularity is confined to strictly zero overlap and disappears in a small magnetic field.
From the full propagators given in [8] one obtains in the long wavelegth limit in the case
of 0 < x, y < x1 (see appendix C)

z < x, y LAGxy
zz (p) ' e(2z−u−v/p)

up3

u < z LAGxy
xz(p) ' e(u−v/p)

up3

z1, z2 > x LAGxx
z1z2

(p) ' 1

xp3

z1, z2 > x RGxx
z1z2

(p) ' 1

x2p2
(18)
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where the last two formulae have already been given in [7] andu = min{x, y}, v =
max{x, y}. Let us analyse these results. Thep−3 singularities are confined to the
diagonal L–A contribution, where the ultrametric prefactor isu−1. In the R propagator
the singularities are of orderp−2 and the ultrametric prefactor isx−2.

Figure 1. From left to right we show the ultrametric trees which correspond to the propagators
G

xy
zz , G

xy
xz andGxx

z1z2
.

We are tempted to understand all these singularities as being generated by the same
mechanism as those of the toy propagator of the previous section. That is, the zero modes
in the R fluctuations (λ(x, x, x) = 0) induce thep−3 singularity in the diagonal (upper
indices) L–A propagator.

However, it seems that there is a difference with respect to the toy propagator. In fact in
the toy propagator thep−3 singularity is cancelled because of the diagonalp−2 singularity,
opposite in sign. In the full theory the ultrametric prefactor of the diagonal R contribution
is not the same as the L–A one, the sign also being the same.

To proceed in this analysis, let us observe that when one has four ultrametric indices,
there are several different possibilities of arranging them on an ultrametric tree. In figure 1
we show the trees corresponding to three of the possibilities. The three graphs correspond
to the three possibilities of having two equal indices in the four index propagator. In the
notation used for the propagators, where at least two indices must be equal, the graphs
correspond, from left to right, toLAG

x,y
zz , LAG

x,y
xz and LAGxx

z1z2
+ RGxx

z1z2
.

When the two equal indices are the upper ones (x = y), there can be both an R and an L
contribution to the propagator (third graph in figure 1), apart from the boundariesz1, z2 = x

where the R contribution is zero.
BecauseLAGxx

z1z2
∼ p−3 does not depend onz1, z2 > x, we are interested in thevolume

of the corresponding L–A diagonal subspace, i.e. the sum∑
abcd

LAθab,cd (19)

whereθ is equal to 1 only in the diagonal L–A region. This sum can be performed using
the general result of Ḿezard in which a sum over replica indices can be transformed into a
sum over all the possibilities of arranging the indices on an ultrametric tree [20].

A sum over several replica variables is equivalent to a sum of different contributions,
each one corresponding to a possibility of arranging the variables on an ultrametric tree.
Each tree has a weight that is given by the number of possible permutations of the tree
multiplied by a factor which depends on the structure of the tree. If we specialize this result
to the case of four indices, we obtain that for each node with three branches the factor
is x while for each node with four branches the factor is 2x2. The previous prescription
holds for all different indices. When the indices coincide pairwise there is an additional
multiplicative factor(−1)m, wherem is the number of pairs.

Using these prescriptions to compute (19) we obtain

2x2 + 2(1 − x)2 + 4x(1 − x) − 4x − 4(1 − x) + 2 = 0 (20)
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i.e. the volume of the L–A diagonal subspace vanishes. The volume of the R subspace
z1, z2 > x is given by

2(1 − x)2 − 4(1 − x) + 2 = 2x2 (21)

while the volume of the off-diagonal subspace is

x + 4(1 − x) − 4 + 2x = −x (22)

which is exactly the factor necessary for the L–A propagator to have the samex dependence
found in the R one!

Let us conclude by considering the projection of the four index propagators in a two
index subspace. In other words we want to define a two index object through the four-index
replica propagators by integrating the lower indices. This operation is defined by the sum
of all the propagatorsGab,cd over all replicasa, b, c, d at fixedx = a ∩ b andy = c ∩ d.
Using distributions for smallp we find that

∑
abcd

Gab,cd(p) ' −2x2 δ(x − y)

x2p2
+ 2x

(
δ(x − y)

xp2
− δ′′(x − y)

x

)
' −2δ′′(x − y)

= G(x, y; 0). (23)

5. Conclusions

In this paper we have analysed a toy propagator that expresses how a small external field,
explicitly breaking replica symmetry, induces a perturbation on the order parameterq(x).
This propagator, defined in the subspace identified byq(x), turns out to be, as expected,
the projection of the complete set of propagators in this subspace.

We have shown that for finitep this propagator is essentially given by two contributions,
their singularities cancelling forp ' 0. This cancellation results in a well defined infrared
limit within the theory of distributions that we have used to extract the infrared behaviour
of a toy four-point function at tree level.

We have considered some aspects of the full theory. In particular we have analysed
the ultrametric structure of the subspace where the fluctuations are of orderp−3, which
corresponds to the third graph in figure 1. This subspace has a global volume equal to zero
and includes, apart from the boundaries, the replicon subspace. Because the volume of the
off-diagonal subspace is−x one might conjecture that, by casting the infrared behaviour of
the propagators within the theory of distributions, these singularities cancel.

A careful analysis is necessary, and work is in progress in this direction.
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Appendix A. Projected propagator

The equation of state at first order inε is

δW [q]

δq(x)

∣∣∣∣
ε=0

+
∫ 1

0

δ2W [q]

δq(x)δq(y)
δq(y; p) dy − p2δq(x; p)

2
+ ε(x; p) = 0 (A1)

which leads to the following equation forG(x, y):

p2G(x, y; p) + 2
∫ x

0
q(z)G(z, y; p) dz + 2q(x)

∫ 1

x

G(z, y; p) dz = 2δ(x − y). (A2)

The solution of equation (A2) for finitep can be achieved by solving the inhomogeneous
equations, adding the most general solution of the homogeneous equations and searching
for the coefficients which solve equation (A2). We obtain forx, y < x1

G(x, y; p) = 2δ(x − y)

p2
− e−|x−y|/p

p3
+ g(x, y; p) (A3)

where the functiong(x, y) is

g(x, y; p) = g++e+(x+y)/p + g−−e−(x+y)/p + g+−(e−|x−y|/p + e+|x−y|/p)

g++ = −p − (1 − x1)

p3

e−(x1/p)

(p + (1 − x1))e+(x1/p) + (p − (1 − x1))e−(x1/p)

g−− = +p + (1 − x1)

p3

e+(x1/p)

(p + (1 − x1))e+(x1/p) + (p − (1 − x1))e−(x1/p)

g+− = +p − (1 − x1)

p3

e−(x1/p)

(p + (1 − x1))e+(x1/p) + (p − (1 − x1))e−(x1/p)
(A4)

as obtained in [12] by using the longitudinal eigenvalues. As can be seen from equation (A2),
whenx or y goes beyond the breakpointx1 the solution, apart from the delta function, no
longer depends on this variable. Forx andy > x1 we then obtain

G(x, y; p) = 2δ(x − y)

p2
− 2

p2

e(x1/p) − e(−x1/p)

(p + (1 − x1))e(x1/p) + (p − (1 − x1))e−(x1/p)
. (A5)

In the limit p → 0 this gives

G(x, y; p) ' 2δ(x − y)

p2
− 2

p2

1

(1 − x1)
. (A6)

Appendix B. Projected four-point function

The aim of this appendix is to show how the result for the four-point function can be derived
through the ‘projected’ propagator. By a derivative with respect toε we obtain

∂G(x, y; 0)

∂ε(z)
= δ′′(x − y)

1

q ′(x)2

d

dx

∂q(x)

∂ε(z)

= δ′′(x − z)

(
−δ′′′(x − z)

1

q ′(x)3
+ δ′′(x − z)

q ′′(x)

q ′(x)4

)
(B1)

and by an additional derivative we obtain
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G(4)
conn(x, y, z, w) = δ′′(x − y)

(
3δ′′′(x − z)

1

q ′(x)4

d

dx

∂q(x)

∂ε(w)

− 4δ′′(x − z)
q ′′(x)

q ′(x)5

d

dx

∂q(x)

∂ε(w)
+ δ′′(x − z)

1

q ′(x)2

d2

dx2

∂q(x)

∂ε(w)

)
= −δ′′(x − y)

q ′(x)5
(3δ′′′(x − z)δ′′′(x − w) + δ′′(x − z)δ′′′′(x − w))

= −δ′′(x − y)

q ′(x)5
(2δ′′′(x − z)δ′′′(x − w)). (B2)

In the last step the contributions of the two diagrams with four external legs, which do not
cancel because of a multiplicity factor of three, can be recognized.

This result can also be obtained using diagrams. The expansion ofW around the mean
field saddle point in the subspace identified byq(x) gives a cubic and a quartic vertex

V (3)(x, y, z) = −δ(x − y)θ(z − y) + 2 permut.

6

V (4)(x, y, z, t) = +δ(x − y)δ(y − z)δ(z − t)

12
. (B3)

Using these vertices, together with the projected propagator, to calculate the four-point
amputated function at the tree level and zero momenta we find

G(4)
amp(x, y, z, t) = −4!V (4)(x, y, z, t) + 3(3!)2

∫ 1

0

∫ 1

0
du dvV (3)(x, y, u)

× G(u, v; 0)V (3)(v, z, t)

= δ(x − y)δ(y − z)δ(z − t)(−2 + 6) 6= 0 (B4)

which is exactly the same result obtained by differentiation on the propagator after cutting
of the external legs.

Appendix C. Infrared limit of the full propagators

In this section we use the results given in [8] for the full Gaussian propagators as the starting
point to explicitly derive their behaviour in the infrared limit. Using the results and the
notation presented in [8] the propagators are given as integrals of a kernelFuv

k weighted
with an ultrametric measure.

In the L–A sector we obtain that for smallp the formulae for the leading contribution to
the kernels in [8] simplify. We consider first the sectork < u < v. The leading contribution
of orderp−3 is independent ofk and disappears in the integral by the derivative. However,
whenk is within orderp of u, the kernel becomes of orderp−2. In fact we have

−1

k

∂

∂k

LAFuv
k ' −1

k

e(2k−u−v/p)

p3

(
− 2

p
+ 8

k

)
(C1)

which, for the propagator, leads to

LAGxy
zz ' e(2z−u−v/p)

up3
. (C2)

For u < k < v we find that the kernel for smallp does not contribute to leading behaviour
of the second and third propagators, which are then given only by the kernelk < u < v

LAGxy
xz ' e−|x−y|/p

up3
. (C3)
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The last L–A propagator (the diagonal) is then

LAGxx
z1z2

' 1

up3
. (C4)

In the R sector the divergent contribution to the propagator for 0< x < x1 is given by

RGxx
z1z2

=
∫ z1

x

dk1

k1

∫ z2

x

dk2

k2

∂2

∂k1∂k2

4

4p2 + k2
1 + k2

2 − 2x2

' 8

x2

∫ 2x(z1−x)

0
dη1

∫ 2x(z2−x)

0
dη2

1

(4p2 + η1 + η2)3

' 1

x2p2
(C5)

that is independent ofz1, z2, if they are greater thanx by a finite amount.
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