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Abstract. By studying the structure of infrared divergences in a toy propagator in the replica
approach to the Ising spin glass bel@w we suggest a possible cancellation mechanism which
could decrease the degree of singularity in the loop expansion.

1. Introduction

The mean field approximation, when fluctuations are not taken into account, predicts a
finite critical temperaturd; for the Ising spin glass [1]. In the replica approach [2], replica
symmetry is spontaneously brokenTatin a hierarchical and continuous way, yielding an
ultrametric organization of equilibrium states (see [3, 4] and [5] for a review).

Corrections to mean field theory up to third ordereir= 6 — D in the paramagnetic
phase have been carried out in [6], while problems still exist in the computation of such
corrections belowl. The difficulties lie in the complexity of the replica approach, which
leads to very complicated bare propagators, with severe infrared singularities (see [7, 8)).

A strong effort has been made in studying this difficult problem and many interesting
results have been obtained. Among them, we recall the analysis of the modes with zero mass
(see [9, 10]), the study of the explicit breaking of replica symmetry (see [11, 12]), the study
of some strong renormalization effects (see [13, 14]) and, most recently, the derivation of a
powerful method to compute the bare propagators (see [15, 16]), which provides a clearer
derivation of the formulae first presented in [7, 8]. Unfortunately, the one-loop contribution
to the propagator has not been fully computed and even the lower critical dimension remains
unknown.

Ignoring the possible renormalization effects, a naive prediction for the lower critical
dimension would be three. Indeed, disregarding phé singularity, which appears only
in the zero overlap propagator and is not present in a small magnetic field, the leading
infrared singularity of the bare propagatorspis®. However, it is not clear how much can
really be inferred from these strong singularities in the framework of replicas. In particular,
guestions arise as to their origin and their consequences for measurable quantities. In fact,
other approaches suggest that the lower critical dimension could be less than three, or at
least very near to three. These follow from a computation of the free energy increase due
to an interface among different phases and from numerical simulations [17-19].

The aim of this paper is to try to take a step towards a deeper understanding of the
structure of these divergences. We focus on howthe singularities are induced in the
bare propagators and we suggest a possible mechanism for their cancellation.

The paper is organized as follows. After a brief summary of the replica approach,
which can be skipped by the expert reader, we study a toy propagator defined using a field
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that explicitly breaks replica symmetry (already studied in [12] using a different method).
For this propagator we are able to derive a differential equation which shows how the
p~2 singularity due to continuous replica symmetry breaking cancels in the infrared limit
and we illustrate how this cancellation results in a well defined limit within the theory of

distributions. Then we show how, in the framework of distributions, this propagator can
be used to calculate the infrared behaviour of a toy four-point function at tree level. We
conclude our analysis by studying the structure of leading singularities in the full theory
and we discuss the possible generalization of the cancellation mechanism.

2. The replica approach

The Ising spin glass, or E-A model [1], is defined by the following Hamiltonian,

H[S,‘] = —ZJ,‘jS,-Sj —th,- (1)
GQ.J) i
wheres; = +1,—1 are the spin variables, = 1,..., N, and () stands for nearest
neighbours. The independent quenched paramelgrsaare chosen from a Gaussian
distribution with zero average and variané&= 1/N. In what follows, the magnetic field
h is taken different from zero, the limit — 0 being performed after the limiV — oo.

The study of the equilibrium properties of the quenched problem can be performed in
the replica approach [2]. In this approach an effective theory is obtained by averaging over
the disorder, indicated by an overbar in the following. Rather than do this for the free
energy, the replica approach averages over the disorder the partition functionopies
(replicas) of the original modely being analytically continued to zero at the end. The
effective theory is then symmetric with respect to permutations ofstleplicas (replica
symmetry), with an x n matrix QO (Q., = Qp, and Q,, = 0) for the order parameter.

At mean field level, a second-order transition occurs at the de Almeida—Thouless line,
which terminates af, = 1 for - = 0. On this line, roughly speaking, several states start to
contribute to the Gibbs measure and ergodicity is lost. These results can be recovered, near
T, through the expansion of the effective free energy density powers of the (small)
order parameter

BFLQ] +log2+ 3% = W[Q] = — Iimoi@ﬂr Q*+5Tro°+ 4, Z(Qaw“) @)
n— b

wheret = T, — T and Tr stands for trace. In the framework of the Parisi ansatz [3], the
saddle point ofQ is looked for in a particular subspace using a hierarchical procedure.
In this subspace, in whickk can be expressed in terms of a functipfx) defined in the
interval [Q, 1], the functionalW[Q] results in

1 1
Wiq] = / (;TQZ(X) - é(xq?’(x) + 3q2(x)/ q(y) dy) + 112q4(x)> dx. 3)
0 X
Below T stationarity with respecj(x) yields the solution
g(x) =x/2 O<x < xg
q(x) = q(x1) xn<x<l1 (4)

wherex; is defined by 2 — x; + xf/z = 0. Replica symmetry, which in this framework
requiresq’ = 0, is spontaneously broken beldy.

Replica symmetry breaking (RSB) is related to the probability of measuring a given
value g for the overlap(s;),(s;), between two states; and b, which differ by a finite
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amount in free energy. It has been shown that such a probability can be computed through
the order parametey(x),
dg(x)\

P(q) =< & ) =20(q1—q) + (1 —291)3(q — q1). (5)

In the metric dictated by the overlap these states are organized ultrametrically: given
three states at least two overlaps are equal, the third being greater than the other two. This
organization allows the use of a tree to express the overlap between different states. By
putting the states at the end of the branches of a tree, the overlap between the states can
be represented by the distance between the top root and the level of the point where the
branches coincide.

Before going beyond mean field, let us recall that the fluctuations of the order parameter
Q around the RSB saddle point are usually divided into three families: longitudinal (L),
anomalous (A) and replicon (R) (see [16] for the most recent and exhaustive analysis).

The longitudinal modes are by definition invariant under the action of the symmetry
group which leaves invariant the ansatz @f and therefore correspond to fluctuations in
g(x). On the other hand, the anomalous and replicon modes break even thfdica
permutation group and are parametrized in term of functions of two and three variables,
as explained in detail in [16]. The conditions imposed by the breaking of this residual
symmetry turn out to be strong enough to determine completely the R eigenvalues but not
the L-A ones, where one has to explicitly solve the integral eigenvalue equations.

Zero modes of the fluctuations around the mean field saddle point appear in each family,
the rest of the spectrum being positive. A remarkable result is that in the replicon sector,
where one has a closed expression for the eigenvalges, [), one finds that zero modes
are present for a finite range of eigenvectors, i.e.

Alx,x,x) =0. (6)
This can also be seen by explicit differentiation of the saddle point equation and using the
fact that replica symmetry breaking is continuous (as first shown in [9]).
For future reference, let us also recall that an explicit RSB can be introduced in the

theory (a deep analysis on the nature of the explicit RSB can be found in [11]) by adding
to the effective free energy the term

1
/0 4 (e (x) d. @

A finite conjugate fielde induces a shift in the order parametgtr) which provides
a kind of infrared regulator because it induces a gap proportional to the slopénahe
spectrum (as shown in [12]).

In the next section we consider such a fields an external source in order to perform
a detailed analysis of the infrared limit in the replica approach.

3. The ‘projected’ theory

For the time being, let us define a propagator in the subspace identifigtkchyTo define
such a propagator, we add to the functiofigly] a kinetic term and consider how a small
external conjugate field, explicitly breaking replica symmetry, perturbs the mean field
solution. We have the following theory for a fiebd(x; p), in which x is a continuous
internal degree of freedom,

1 1
Wlg + 8q] — %p2/0 (Sq(x;p))zderfo 8q(x; p)e(x; p)dx (8)
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and we introduce the bare propaga&otx, y; p) through the relation

8q(x; p) = /OlG(x,y; p)e(y; p) dy. 9)
For smalle the equation fog (x) leads to the following equation (see appendix A),
P°G(x,y; p) + 2/0)661(2)G(z, y; p) dz + 2q(x) /XIG(Z, y; p)dz = 28(x — y). (10)
After repeated differentiation of the replica variable, we obtain
2% —2¢'(x)G(x, y; p) + 29" (x) /lG(z, y; p)dz = 28"(x — ). (11)

In what follows we are mainly interested in the diagonal segter y < x; whenp — 0,
so we focus on this case. Fpr= 0 the previous equation leads to the solution

G(x,y;0) = —28"(x — y) (12)
while the solution to these equations for finjgeandx, y < x; is

28(x —y) e hlp
G(x,y; p) = e Y = +g(x,y; p) (13)

where the functiorg(x, y; p) is not singular in the limitp — 0 (appendix A).

We observe that the propagator already computed has been studied in [12], using a
different method, for the purpose of discussing the regularization induced by

The results (12) and (13) are interesting for two reasons. On the one hand, (12)
shows how the small momentum behaviour of this propagator can be cast into the form
of a distribution. The integral kernel of the zero momentum equationGois only
min{g(x), g(y)} because the strictly diagonal contribution of the kernel vanishes on the
mean field saddle point. This implies that equation (12) is its inverse, which shows that
a smalle(x) > 0, independent of space, induces a shifig@f) for x < x; only through
—2¢(x)” > 0. The propagator induced lyfor x < x; is massive.

On the other hand, (13) allows us to understand how continuous replica symmetry
breaking gives rise before; to the diagonalp=2 singularity for smallp. In fact, when
we add the kinetic term of ordep® on the diagonal, the absence of a strictly diagonal
contribution in the kernel implies a contributigm 2 on the diagonal ofG. But now, to
keep the off-diagonal elements of the product of the two matrices zero, a diverging off-
diagonal contribution inG is also needed. Such a contribution can onlyo& with an
exponential prefactor because it has to be smooth and coalesces=ftx.

We learn that care is needed in the linpit— 0. This limit should be considered in
the sense of distributions, paying attention to the cross-over betwesrd p. A finite
momentum induces a regularization of the distribution which appears through two singular
terms, which cancel in the limit of smafl.

To proceed in this analysis let us now consider the propagator with a seugc®.
We know from the previous analysis (at= 0) that for smallp there is an off-diagonal
contribution of widthp and orderp—2 that cancels the 2 singularity and leads to a massive
propagator. The analysis fgr= 0 and smalk is similar withe’/q’ playing the role ofp?.
At zero momentum the propagator does not diverge’'asbut is instead given by

_dq(x)e _(S”(x )

Cey0=50) =7 g (14)
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Let us use this result to compute the four-point function at tree level. By taking two
derivatives with respect to the conjugate fieldve obtain
82G(x, y; 0). 25”(x — )8 (x —w)d"”"(x —z)

Se(z)8e(w) |._o q'(x)5 '
This result, derived in detail in appendix B, shows that in the four-point function the infrared
contributions from the two diagrams with four external legs, the one from the quartic vertex
and the one from two cubic vertices with a propagator flowing between, are similar but do
not cancel.

The absence of the complete cancellation is not too surprising for this propagator. In
fact this propagator is massive and expresses the response of the order parameter to an
explicit breaking of the replica symmetry. It is similar to the longitudinal propagator in
an Q(N) model, which is regular in the infrared limit. However, it is remarkable that in
the long wavelength limit the propagator forces the two diagrams with four external legs,
which are very different in structure, towards the same kind of contribution. This is exactly
what happens in an @/) model, where the cancellation of a different four-point function
(transverse) is required by a Ward identity.

The possibility of using distributions to investigate the infrared limit of the complete
propagators and to compute the complete four-point function is appealing. Let us analyse
the structure of the leading singularities of the full theory.

Gih(x, v, 2, w; 0) = (15)

4. A preliminary analysis of the full theory

Our aim here is to investigate the possibility of extending the results obtained for the toy
propagator, a two index object, to the complete propagators.

We have performed a preliminary study of these propagators using the results in [7, 8].
The propagators for the full theory are defined through the inverse of the mass matrix with
a diagonal kinetic term

W[ Q] )‘1 | (16)
af,ys

8050
Because the replicon eigenvalues are known in a closed form, the Green functions are
usually split (we follow the notation introduced in [8]) into two contributions,

RG*™ (p) and G (p) (17)

2122 2122
whereaNB =x if gop = q(x), aNa =1, andx =aNP, y = yNé, z1 = maaNy, aNs}
andzy; = max{g Ny, B NS}

We are interested in the divergences of orge? because we know from [7] that the
p~4 singularity is confined to strictly zero overlap and disappears in a small magnetic field.
From the full propagators given in [8] one obtains in the long wavelegth limit in the case
of 0 < x, y < x1 (see appendix C)

Gaﬁ,yé(p) = <5Qaﬂ(17)3Qy3(_P)> = <p2 +

LA e(ZZ*M*U/[’)

T<x,y G (p) ~ 3
up

LA ~xy e(u—v/[’)

U<z Go(p) >~ up?
1

LA ~
21,22 2 X Gl (p) = ?
z2>x  NGIL(p) > (18)

x2p2
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where the last two formulae have already been given in [7] and min{x, y}, v =
max{x, y}. Let us analyse these results. Thpe® singularities are confined to the
diagonal L—A contribution, where the ultrametric prefactomis. In the R propagator
the singularities are of ordgr—2 and the ultrametric prefactor is2.

A b f d a b . d a c b d

Figure 1. From left to right we show the ultrametric trees which correspond to the propagators
G}, Gy} and Gy,

We are tempted to understand all these singularities as being generated by the same
mechanism as those of the toy propagator of the previous section. That is, the zero modes
in the R fluctuations X(x, x, x) = 0) induce thep—2 singularity in the diagonal (upper
indices) L—A propagator.

However, it seems that there is a difference with respect to the toy propagator. In fact in
the toy propagator thg—2 singularity is cancelled because of the diagopaf singularity,
opposite in sign. In the full theory the ultrametric prefactor of the diagonal R contribution
is not the same as the L-A one, the sign also being the same.

To proceed in this analysis, let us observe that when one has four ultrametric indices,
there are several different possibilities of arranging them on an ultrametric tree. In figure 1
we show the trees corresponding to three of the possibilities. The three graphs correspond
to the three possibilities of having two equal indices in the four index propagator. In the
notation used for the propagators, where at least two indices must be equal, the graphs
correspond, from left to right, t8* G2, A G and"A G + RGYE .

When the two equal indices are the upper ones:(y), there can be bothan R and an L
contribution to the propagator (third graph in figure 1), apart from the boundaries = x
where the R contribution is zero.

Becausé” G**_ ~ p~2 does not depend on, zz > x, we are interested in theolume
of the corresponding L—A diagonal subspace, i.e. the sum

Z LA Qab,cd (19)

abed

where# is equal to 1 only in the diagonal L—A region. This sum can be performed using
the general result of Bkzard in which a sum over replica indices can be transformed into a
sum over all the possibilities of arranging the indices on an ultrametric tree [20].

A sum over several replica variables is equivalent to a sum of different contributions,
each one corresponding to a possibility of arranging the variables on an ultrametric tree.
Each tree has a weight that is given by the number of possible permutations of the tree
multiplied by a factor which depends on the structure of the tree. If we specialize this result
to the case of four indices, we obtain that for each node with three branches the factor
is x while for each node with four branches the factor i€.2 The previous prescription
holds for all different indices. When the indices coincide pairwise there is an additional
multiplicative factor(—21)", wherem is the number of pairs.

Using these prescriptions to compute (19) we obtain

22 4+201—x)?+4x(l—x)—4dx—41—-x)+2=0 (20)
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i.e. the volume of the L-A diagonal subspace vanishes. The volume of the R subspace
Z1, 22 > X IS given by

21— x)2 — 41 —x) +2=2x? (21)
while the volume of the off-diagonal subspace is
x+41—-x)—4+2x = —x (22)

which is exactly the factor necessary for the L—A propagator to have the saegendence
found in the R one!

Let us conclude by considering the projection of the four index propagators in a two
index subspace. In other words we want to define a two index object through the four-index
replica propagators by integrating the lower indices. This operation is defined by the sum
of all the propagators;,;, . over all replicasa, b, ¢, d at fixedx =anb andy =cnNd.

Using distributions for smalp we find that

Z Gap,ca(p) = —szw 42 (5()( - ) . §"(x — y))

2 2
abed p AP X

~-28"(x —y)
= G(x, y;0). (23)

5. Conclusions

In this paper we have analysed a toy propagator that expresses how a small external field,
explicitly breaking replica symmetry, induces a perturbation on the order paragieber

This propagator, defined in the subspace identified; by), turns out to be, as expected,

the projection of the complete set of propagators in this subspace.

We have shown that for finitg this propagator is essentially given by two contributions,
their singularities cancelling fop >~ 0. This cancellation results in a well defined infrared
limit within the theory of distributions that we have used to extract the infrared behaviour
of a toy four-point function at tree level.

We have considered some aspects of the full theory. In particular we have analysed
the ultrametric structure of the subspace where the fluctuations are of prdemhich
corresponds to the third graph in figure 1. This subspace has a global volume equal to zero
and includes, apart from the boundaries, the replicon subspace. Because the volume of the
off-diagonal subspace isx one might conjecture that, by casting the infrared behaviour of
the propagators within the theory of distributions, these singularities cancel.

A careful analysis is necessary, and work is in progress in this direction.
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Appendix A. Projected propagator

The equation of state at first order énis

sWlq] fl 8*Wq] p?3q(x; p)
e 0q(y; p)dy — —————~ +€(x;p) =0 Al
5400 o Jo 8qC8q () T 2 P (A1)
which leads to the following equation fa¥ (x, y):
X 1
p*G(x,y: p) +2/ q(2)G(z, y; p)dz +2q(x)f G(z,y; p)dz = 25(x — ). (A2)
0 X

The solution of equation (A2) for finitg can be achieved by solving the inhomogeneous
equations, adding the most general solution of the homogeneous equations and searching
for the coefficients which solve equation (A2). We obtain oy < x;

_ 28(x —y) el

G(x,y; p) = 5 s +8(x,y:p) (A3)
p p

where the functiorg(x, y) is

g(x,y; p) = g++e+(X+y)/p + g——e—(X+y)/p +gt (e—\x—yl/p + gt l/py

- p- (1—x7) e (x1/p)
pe (p+ (L —x1)er/P) + (p — (1 — x1))e~ /P
—_ ptA-x) ern/n
ST A x))er D+ (p— (L= x)e
P (1—x7) e (x1/p) A
§ =+ 3 _ +(1/p) —(1- —(1/p) (A4)
P (p+@A—x1))e +(p—A—x1))e

as obtained in [12] by using the longitudinal eigenvalues. As can be seen from equation (A2),
whenx or y goes beyond the breakpoirnt the solution, apart from the delta function, no
longer depends on this variable. Foandy > x; we then obtain

25(x — ) 2 eW1/p) _ @(=x1/p)

Cy — _“ . A
Gy = T 2 (p+ A=)/ + (p— (L= xa)e ) (49)
In the limit p — 0 this gives
2(x—y) 2 1
G(x,y; p) >~ - — . A6
(x, y; p) 2 02 (- x1) (A6)

Appendix B. Projected four-point function

The aim of this appendix is to show how the result for the four-point function can be derived
through the ‘projected’ propagator. By a derivative with respect tee obtain

M_y(x_ ) 1 an(x)
de(z) Y q'(x)? dx 9e(z)
" m ” CI”(X)
SO (_5 R TO S Z)q'(xr‘) (51

and by an additional derivative we obtain
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1 d agx)
(4 Y N " _ IR e
Gconn(X, yv,z,w)=48x—y) (35 (x Z)q’(x)“ dx de(w)
. g') d g 1 & aqw)
A ) s d de) T TV gz ane ae(w))
— _L_Sy)(ga///(x _ Z)SW()C _ w) + (S”()C _ Z)(S,W(}C _ LU))
5,,‘1 )
- _L_Sy)(za”’(x —2)8" (x — w)). (B2)
q'(x)

In the last step the contributions of the two diagrams with four external legs, which do not
cancel because of a multiplicity factor of three, can be recognized.
This result can also be obtained using diagrams. The expansiBhabund the mean
field saddle point in the subspace identifiedday) gives a cubic and a quartic vertex
8(x — y)0(z — y) + 2 permut

6

§(x —y)8(y —z2)8(z — 1)
12 '

Using these vertices, together with the projected propagator, to calculate the four-point

amputated function at the tree level and zero momenta we find

VO (x,y,2) =

VO, y,z,0) =+ (B3)

1 1
GO x v, 2.0 = —AVD(x, y,2,1) +3(3!)2/ / du doV® (x, y, u)
0 0

x Gu,v; )V (v, z,1)
=8(x —y)8(y —2)8(z —1)(—2+6) #0 (B4)

which is exactly the same result obtained by differentiation on the propagator after cutting
of the external legs.

Appendix C. Infrared limit of the full propagators

In this section we use the results given in [8] for the full Gaussian propagators as the starting
point to explicitly derive their behaviour in the infrared limit. Using the results and the
notation presented in [8] the propagators are given as integrals of a Kgftheleighted
with an ultrametric measure.

In the L—A sector we obtain that for smallthe formulae for the leading contribution to
the kernels in [8] simplify. We consider first the sectok u < v. The leading contribution
of order p—2 is independent of and disappears in the integral by the derivative. However,
whenk is within order p of u, the kernel becomes of order2. In fact we have

(Zk—u—v/p)
_iaakLAFk””:—ieps (—§+2) (€1
which, for the propagator, leads to
LA ny - e(ZZ—u—v/p) (Cz)
44 up3

Foru < k < v we find that the kernel for smajt does not contribute to leading behaviour
of the second and third propagators, which are then given only by the kerned < v
e lx=yl/p

LA ~xy ~
G~ s (C3)
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The last L—A propagator (the diagonal) is then

1
LA ~xx o
o = 3" (C4)

In the R sector the divergent contribution to the propagator fer0< x; is given by

G- [ [T 4
az | ky Jo ko 0kidko Ap? 4 k2 4 k3 — 2x2
8

[

2x(z1—x) 2x(z2—x) 1
— dn1 / dpp———
x? /0 0 (4p? +n1+n2)°

1
x2p2

[

(C5)

that is independent afy, z,, if they are greater tham by a finite amount.
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